The binomial-neighbour instance-based learner on a multiclass performance measure scheme
نویسندگان
چکیده
This paper presents a novel instance-based learning methodology the Binomial-Neighbour (B-N) algorithm. Unlike to other k-Nearest Neighbour algorithms, B-N employs binomial search through vectors of statistical features and distance primitives. The binomial combinations derived from the search with best classification accuracy are distinct primitives which characterise a pattern. The statistical features employ a twofold role; initially to model the data set in a dimensionality reduction preprocessing, and finally to exploit these attributes to recognise patterns. The paper introduces as well a performance measure scheme for multiclass problems using type error statistics. We harness this scheme to evaluate the B-N model on a benchmark human action dataset of normal and aggressive activities. Classification results are being compared with the standard IBk and IB1 models achieving significantly exceptional recognition performance.
منابع مشابه
INSTANCE-BASED LEARNING: Nearest Neighbour with Generalisation
Instance-based learning is a machine learning method that classifies new examples by comparing them to those already seen and in memory. There are two types of instance-based learning; nearest neighbour and case-based reasoning. Of these two methods, nearest neighbour fell into disfavour during the 1980s, but regained popularity recently due to its simplicity and ease of implementation. Nearest...
متن کاملProsodic Boundary Prediction for Greek Speech Synthesis
In this article, we evaluate features and algorithms for the task of prosodic boundary prediction for Greek. For this purpose a prosodic corpus composed of generic domain text was constructed. Feature contribution was evaluated and ranked with the application of information gain ranking and correlation -based feature selection filtering methods. Resulted datasets were applied to C4.5 decision t...
متن کاملEfficient Feature Selection and Multiclass Classification with Integrated Instance and Model Based Learning
Multiclass classification and feature (variable) selections are commonly encountered in many biological and medical applications. However, extending binary classification approaches to multiclass problems is not trivial. Instance-based methods such as the K nearest neighbor (KNN) can naturally extend to multiclass problems and usually perform well with unbalanced data, but suffer from the curse...
متن کاملEfficient decomposition-based multiclass and multilabel classification
Decomposition-based methods are widely used for multiclass and multilabel classification. These approaches transform or reduce the original task to a set of smaller possibly simpler problems and allow thereby often to utilize many established learning algorithms, which are not amenable to the original task. Even for directly applicable learning algorithms, the combination with a decomposition-s...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 19 شماره
صفحات -
تاریخ انتشار 2015